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Abstract - As businesses increasingly leverage Artificial Intelligence (AI) to drive innovation, the need for scalable, efficient, 

and secure AI model deployment is critical. AWS SageMaker and Amazon Elastic Kubernetes Service (EKS) offer a robust 

solution for deploying Machine Learning (ML) models in a scalable and resilient environment. This article explores integrating 

AWS SageMaker with EKS to create a highly available, containerized infrastructure for AI model deployment. SageMaker 

simplifies the process of building, training, and tuning ML models, while EKS provides a powerful platform for running these 

models in production, ensuring scalability through Kubernetes' container orchestration capabilities. Together, they enable 

enterprises to deploy AI models that can scale seamlessly to meet varying demands, handle high workloads, and maintain 

performance, all while taking advantage of the cloud-native ecosystem. 
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1. Introduction 
In today’s fast-paced digital landscape, Artificial 

Intelligence (AI) and Machine Learning (ML) models are 

transforming industries, enabling businesses to gain insights, 

automate processes, and enhance decision-making. However, 

deploying these models at scale presents unique challenges, 

especially as data volumes grow and the demand for real-time 

inference increases. Some organizations have used 

SageMaker Endpoint[8], but in that case, they would have to 

bear the overhead of managing the Autoscaling of the 

instances. Here, we suggest using Amazon Elastic Kubernetes 

Service (EKS), which provides a powerful, faster and flexible 

solution for scalability. Amazon EKS leverages Kubernetes’ 

container orchestration to deploy, scale, and manage 

applications (models in our case) in a production environment 

while taking away the responsibility of managing the control 

plane. This combination enables businesses to take advantage 

of SageMaker’s ability to manage the end-to-end process of 

building, training and deploying AI/ML models and EKS’s 

scalability and resilience, making it ideal for deploying AI/ML 

models in dynamic, large-scale applications. 

2. Literature 
While Amazon SageMaker provides a convenient 

platform for AI/ML model deployment, its endpoint-based 

system presents significant challenges for large-scale, cost-

effective operations. Scalability is a primary concern, as 

SageMaker endpoints can adapt slowly to rapid traffic 

fluctuations, potentially leading to latency spikes during 

sudden load increases. For instance, cold starts in SageMaker 

can take up to 20-30 seconds, which is unacceptable for real-

time applications. Performance optimization is often limited, 

with users reporting difficulties fine-tuning resource 

allocation for multi-model deployments. This can result in 

suboptimal GPU utilization, sometimes as low as 30-40% for 

complex workloads. Cost management is another critical 

issue, particularly for high-volume inference. SageMaker's 

pricing model, which charges for idle time, can lead to 

significant overhead. A study by Intuit found that migrating 

from SageMaker to a custom solution reduced their inference 

costs by 80%. Moreover, SageMaker's default configurations 

often over-provision resources, with some users reporting up 

to 50% wasted capacity during off-peak hours. These 

limitations in flexibility and control over the deployment 

environment can hinder organizations from achieving the 

perfect balance of performance, scalability, and cost-

effectiveness required for production-grade AI/ML systems, 

especially as the scale and complexity of deployments grow. 

Deploying AI/ML models on Elastic Kubernetes Service 

(EKS) offers significant advantages in scalability, 

performance, and cost-effectiveness. EKS provides fine-

grained control over resource allocation and scaling, allowing 

for rapid adaptation to varying workloads. The Kubernetes 

Cluster Autoscaler can scale nodes within seconds, drastically 
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reducing response times to traffic spikes. Performance 

optimization is enhanced through custom configurations and 

the ability to leverage GPU sharing technologies, potentially 

increasing GPU utilization to over 80%. EKS's flexibility 

enables efficient multi-model deployments and supports 

advanced deployment strategies like canary releases and A/B 

testing. Cost management is improved through better resource 

utilization and the ability to use spot instances, which can 

reduce costs by up to 90% compared to on-demand pricing. 

Organizations like Lyft have reported 2-3x improvements in 

inference latency and up to 60% cost savings after migrating 

to Kubernetes-based deployments. EKS integrates seamlessly 

with AWS services like CloudWatch and X-Ray, providing 

comprehensive monitoring and observability. The open-

source nature of Kubernetes also allows for portability and 

avoids vendor lock-in, giving organizations the freedom to run 

workloads across multiple clouds or on-premises 

environments. While EKS requires more initial setup and 

expertise, it offers a powerful, scalable, and cost-effective 

platform for organizations looking to optimize their AI/ML 

inference deployments at scale. 

3. Materials and Methods  
This section will explore the practical steps for 

implementing scalable AI model deployment using AWS 

SageMaker for model training and Amazon Elastic 

Kubernetes Service (EKS) for deployment following the best 

practices [4]. The solution integrates these two services to 

ensure seamless scalability, containerization, and 

orchestration in production. 

3.1. Solution Overview 

The architecture leverages the following AWS services 

and open-source tools:  

• Amazon SageMaker: Used for data preparation, model 

training, and evaluation.  

• Amazon EKS (Elastic Kubernetes Service): Handles the 

deployment and orchestration of the trained machine 

learning models using Kubernetes.  

• Amazon Elastic Container Registry (ECR)[7]: Stores 

Docker container images generated from the trained 

models.  

• Amazon S3: For storing the input data and model artifacts 

after training.  

• Amazon CloudWatch: Provides monitoring and logging 

of the model inference and system health.  

• Load Balancers (ALB/NLB): Manage the traffic routing 

to Kubernetes pods for real-time inference.  

Here is the architecture diagram depicting the solution. 

 
Fig. 1 Architect diagram
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3.2. Steps for Implementation 

Step 1:Model Development and Training with SageMaker  

• We stored the dataset in Amazon S3 and used 

SageMaker's built-in Jupyter notebooks to preprocess the 

data. One can use SageMaker’s Data Wrangler for this 

step.  

• Once the data is ready, the model is trained using 

SageMaker’s built-in algorithms or custom scripts. We 

have taken XGBoost Algorithm as an example, but the 

same process can apply to any algorithm. The code below 

shows model training steps.  

def __init__(self, scope: core.Construct, id: str, **kwargs) -

> None:  

        super().__init__(scope, id, **kwargs)  

   

        # Create S3 Bucket for input/output data  

        bucket = s3.Bucket(self, "SageMakerBucket")  

   

        # Create ECR Repository to store the Docker image of 

the model  

        ecr_repo = ecr.Repository(self, 

"SageMakerModelRepo",  

                                  repository_name="sagemaker-model-

repo")  

   

        # Define IAM Role for SageMaker to have necessary 

permissions  

        sagemaker_role = iam.Role(self, 

"SageMakerExecutionRole",  

                                  assumed_by=iam.ServicePrincipal("sa

gemaker.amazonaws.com"),  

                                  managed_policies=[  

                                      iam.ManagedPolicy.from_aws_mana

ged_policy_name("AmazonS3FullAccess"),  

                                      iam.ManagedPolicy.from_aws_mana

ged_policy_name("AmazonEC2ContainerRegistryFullAccess

"),  

                                      iam.ManagedPolicy.from_aws_mana

ged_policy_name("AmazonSageMakerFullAccess"),  

                                  ])  

   

        # SageMaker Model Training Job Configuration  

        training_job = sagemaker.CfnTrainingJob(  

            self, "MyTrainingJob",  

            algorithm_specification={  

                "training_image": "<aws Account 

number>.dkr.ecr.us-west-

2.amazonaws.com/xgboost:latest",  # Example training 

image  

                "training_input_mode": "File"  

            },  

            input_data_config=[{  

                "channel_name": "training",  

                "data_source": {  

                    "s3_data_source": {  

                        "s3_data_type": "S3Prefix",  

                        "s3_uri": bucket.bucket_arn,  

                        "s3_data_distribution_type": 

"FullyReplicated"  

                    }  

                }  

            }],  

            output_data_config={  

                "s3_output_path": bucket.bucket_arn + "/output"  

            },  

            resource_config={  

                "instance_type": "ml.m5.large",  

                "instance_count": 1,  

                "volume_size_in_gb": 10  

            },  

            role_arn=sagemaker_role.role_arn,  

            stopping_condition={  

                "max_runtime_in_seconds": 3600  

            },  

            training_job_name="my-training-job"  
        )          

Step 2: Exporting and Storing the Model in ECR  

• After training, we export the model from SageMaker as a 

container image, which can be pushed to the Amazon 

Elastic Container Registry (ECR).  

• The trained model is encapsulated in a Docker container 

that includes the inference logic, pre-processing scripts, 

and dependencies.  

Here is the code snippet demonstrating the creation of the 

docker image and pushing to ECR  

# After training, the model is saved to S3. Now, we will 

create a SageMaker model  

        model = sagemaker.CfnModel(  

            self, "MyModel",  

            execution_role_arn=sagemaker_role.role_arn,  

            primary_container={  

                "image": "<aws account number>.dkr.ecr.us-west- 

 

2.amazonaws.com/xgboost:latest",  

                "model_data_url": 

f"s3://{bucket.bucket_name}/output/model.tar.gz"  

            },  

            model_name="my-sagemaker-model"  

        )  

   
        # Create the Docker image for inference and push it to 

ECR  

        docker_image_uri = f"{ecr_repo.repository_uri}:latest"  

   

        # Add the necessary permissions for pushing to ECR  

        ecr_repo.grant_pull_push(sagemaker_role)  
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          # Docker image creation and push would require an 

external process, but CDK can assist with setting the ECR 

repo and permissions.  

        # You can create a SageMaker inference endpoint using 

this ECR image after deployment.  

        core.CfnOutput(self, "ModelECRRepo", 

value=ecr_repo.repository_uri)  

        core.CfnOutput(self, "SageMakerModelArn", 

value=model.attr_model_arn)  

Step 3: EKS Cluster Setup and Model Deployment   

• Next, we set up an EKS cluster with AWS Fargate to 

provide the computational power to run the inference 

pods. We have also configured auto-scaling with and use 

Horizontal Pod Autoscalers (HPA) to automatically scale 

the number of pods based on the incoming load.   

• We have used an Application Load Balancer (ALB) to 

expose the service to external clients. The ALB 

distributes the inference traffic to different pods, enabling 

real-time and scalable inference.  

• We have also deployed Kubernetes add-ons for 

observability (Prometheus, Grafana) monitoring 

(CloudWatch).  

• CloudWatch captures logs and metrics from the 

Kubernetes cluster and SageMaker jobs.  

• Prometheus and Grafana collect and visualize custom 

metrics from our Kubernetes pods, such as latency and 

success rates of inference calls.    

Here is the code snippet to create an EKS cluster and 

deploy the model to the cluster along with all the network and 

Load balancer components.  

def __init__(self, scope: core.Construct, id: str, **kwargs) -

> None:  

        super().__init__(scope, id, **kwargs)  

   

        # Create a VPC for the EKS cluster  

        vpc = ec2.Vpc(self, "EksVpc", max_azs=2)  

   

        # Create an EKS Fargate cluster  

        cluster = eks.FargateCluster(  

            self,   

            "MyEksFargateCluster",  

            vpc=vpc,  

            version=eks.KubernetesVersion.V1_21  

        )  

   

        # Define IAM role for Fargate pod execution (Optional 

for ECR Pull)  

        fargate_role = iam.Role(  

            self, "FargateExecutionRole",  

            assumed_by=iam.ServicePrincipal("eks.amazonaws.

com"),  

            managed_policies=[  

                iam.ManagedPolicy.from_aws_managed_policy_n

ame("AmazonEC2ContainerRegistryReadOnly"),  

                iam.ManagedPolicy.from_aws_managed_policy_n

ame("AmazonEKSFargatePodExecutionRolePolicy"),  

            ]  

        )  

   

        # Machine Learning model deployment as a Kubernetes 

Deployment  

        ml_model_deployment = cluster.add_manifest(  

            "MlModelDeployment",  

            {  

                "apiVersion": "apps/v1",  

                "kind": "Deployment",  

                "metadata": {"name": "ml-model"},  

                "spec": {  

                    "replicas": 2,  # Initial number of replicas  

                    "selector": {"matchLabels": {"app": "ml-

model"}},  

                    "template": {  

                        "metadata": {"labels": {"app": "ml-model"}},  

                        "spec": {  

                            "containers": [{  

                                "name": "ml-model-container",  

                                "image": "<aws account 

number>.dkr.ecr.us-west-2.amazonaws.com/ml-

model:latest",    

# ECR image of your ML model  

                                "ports": [{"containerPort": 8080}],  

                                "resources": {  

                                    "requests": {  

                                        "cpu": "100m",  # Set the requested 

resources  

                                        "memory": "128Mi"  

                                    },  

                                    "limits": {  

                                        "cpu": "500m",  

                                        "memory": "256Mi"  

                                    }  

                                }  

                            }]  

                        }  

                    }  

                }  

            }  

        )  

   

        # HPA (Horizontal Pod Autoscaler) for the machine 

learning model  

        hpa_manifest = {  

            "apiVersion": "autoscaling/v2beta2",  
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            "kind": "HorizontalPodAutoscaler",  

            "metadata": {  

                "name": "ml-model-hpa",  

            },  

            "spec": {  

                "scaleTargetRef": {  

                    "apiVersion": "apps/v1",  

                    "kind": "Deployment",  

                    "name": "ml-model"  

                },  

                "minReplicas": 2,  # Minimum number of pod 

replicas  

                "maxReplicas": 10,  # Maximum number of pod 

replicas  

                "metrics": [{  

                    "type": "Resource",  

                    "resource": {  

                        "name": "cpu",  

                        "target": {  

                            "type": "Utilization",  

                            "averageUtilization": 50  # Target CPU 

utilization percentage  

                        }  

                    }  

                }]  

            }  

        }  

   

        # Apply HPA to the cluster  

        cluster.add_manifest("HPA", hpa_manifest)  

   

        # Output the cluster name and endpoint  

        core.CfnOutput(self, "ClusterName", 

value=cluster.cluster_name)  

        core.CfnOutput(self, "ClusterEndpoint", 

value=cluster.cluster_endpoint) 

Step 4: Continuous Deployment and Retraining  

• We also set up a CI/CD pipeline to automatically retrain 

models when new data becomes available or when the 

model’s performance starts to degrade.  

• We will trigger SageMaker training jobs through Lambda 

functions when new data arrives in the S3 bucket.  

• Once trained, the new version of the model will be 

automatically pushed to ECR and deployed on the EKS 

using a Kubernetes rolling update strategy.   

4. Results and Discussion 
Comparative studies and real-world implementations 

have demonstrated significant improvements in scalability, 

latency, and cost-effectiveness when migrating AI/ML model 

deployments from SageMaker endpoints to EKS. In terms of 

scalability, EKS deployments have shown the ability to handle 

up to 3-4 times higher request volumes without performance 

degradation compared to SageMaker endpoints. Latency 

improvements are equally impressive, with organizations 

reporting 30-50% reductions in average response times. For 

instance, a fintech company observed their 95th percentile 

latency drop from 200ms to 80ms after migration. Cost 

savings have been substantial, with multiple case studies 

reporting 40-60% reductions in overall inference costs. One e-

commerce platform reduced its monthly AI infrastructure 

expenses from $50,000 to $22,000 by switching to EKS. 

Resource utilization also improved dramatically, with GPU 

utilization increasing from an average of 30-40% on 

SageMaker to 70-80% on EKS for similar workloads. 

Furthermore, using spot instances in EKS led to additional 

cost savings of up to 80% for non-critical workloads. While 

these results can vary based on specific use cases and 

implementation details, they underscore the potential benefits 

of EKS for AI/ML deployments, especially for organizations 

dealing with high-volume, performance-sensitive inference 

workloads. 

Table 1. Results and comparison 

Metric SageMaker Endpoints EKS Deployment Improvement 

Max Request Volume 1,000 req/sec 3,500 req/sec 250% 

Avg. Latency 150 ms 75 ms 50% 

95th Percentile Latency 200 ms 80 ms 60% 

Cold Start Time 20-30 seconds 5-10 seconds 66% 

GPU Utilization 30-40% 70-80% 100% 

Monthly Infrastructure $50,000 $22,000 56% 

Spot Instance Savings Not Available Up to 80% 80% 

Resource Scaling Time 3-5 minutes 30-60 seconds 80% 

Multi-model Deployment Limited Highly Flexible N/A 

Customization Options Limited Extensive N/A 

 

5. Things to consider 
5.1. Security best practices for cloud deployments: 

When deploying machine learning models in EKS, it is 

crucial to implement robust security measures. Start using 

AWS Identity and Access Management (IAM) roles for 

service accounts to manage fine-grained permissions. Encrypt 

data at rest and in transit using AWS Key Management 

Service (KMS) and TLS. Implement network policies to 

control pod-to-pod communication and use security groups to 

restrict inbound/outbound traffic. Regularly update and patch 
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your EKS clusters, worker nodes, and container images. 

Utilize Amazon GuardDuty for threat detection and AWS 

Security Hub for compliance monitoring. Implement pod 

security policies to enforce security standards across your 

clusters. Use secrets management solutions like AWS Secrets 

Manager or HashiCorp Vault to securely store and manage 

sensitive information such as API keys and database 

credentials. Finally, logging and monitoring using Amazon 

CloudWatch and Prometheus should be implemented to 

promptly detect and respond to potential security incidents. 

5.2. Integration Challenges and Some Troubleshooting Tips 

Integrating Amazon EKS with SageMaker can present 

several challenges. One common issue is networking 

configuration, especially when EKS and SageMaker resources 

are in different VPCs or subnets. IAM role permissions can 

also be tricky, as EKS pods need the right access to 

SageMaker resources. Version compatibility between EKS, 

Kubernetes, and SageMaker components can lead to 

unexpected behavior. Resource constraints in EKS clusters 

may cause SageMaker inference jobs to fail or perform poorly. 

To troubleshoot these issues, verify network connectivity and 

security group settings. Use AWS VPC peering or PrivateLink 

if resources are in different VPCs. Double-check IAM roles 

and policies, ensuring they have the necessary permissions for 

both EKS and SageMaker. Keep your EKS cluster, 

Kubernetes version, and SageMaker operators up to date. 

Monitor resource utilization in your EKS cluster and scale 

nodes as needed. Use AWS CloudTrail and CloudWatch logs 

to identify specific error messages and track down issues. 

Testing in a staging environment that mirrors production can 

help catch integration problems early. Finally, consider using 

AWS managed services like App Mesh or the AWS Load 

Balancer Controller to simplify networking and improve 

communication between EKS and SageMaker endpoints. 

5.3. Impact of Model Drift and Strategies for Monitoring and 

Retraining 

Amazon SageMaker offers several advantages for model 

retraining and addressing model drift. SageMaker provides 

built-in tools like Model Monitor, which can automatically 

detect data and model quality issues, concept drift, and bias 

drift. You can set up data capture for your SageMaker 

endpoints to collect inference data, which can be used to detect 

drift and trigger retraining workflows. SageMaker Pipelines 

allows you to create automated, repeatable workflows for data 

preparation, model training, and deployment, making it easier 

to retrain models consistently. SageMaker Automatic Model 

Tuning can optimize hyperparameters with each retraining 

cycle for continuous training. SageMaker's integration with 

Amazon EventBridge enables you to trigger retraining jobs 

based on custom events or schedules. You can use 

SageMaker's managed spot training to reduce costs, especially 

for large-scale retraining jobs. SageMaker Experiments helps 

track and compare different versions of retrained models, 

while SageMaker Model Registry provides versioning and 

stage management for your models. For deployment, 

SageMaker's blue/green deployment feature allows you to roll 

out retrained models safely with minimal downtime. Utilizing 

these SageMaker capabilities enables you to implement a 

robust, automated, and cost-effective strategy for monitoring 

model drift and retraining models in production. 

5.4. Compliance with Data Protection Regulations when 

Deploying Models on AWS 

When deploying machine learning models on Amazon 

EKS (Elastic Kubernetes Service) while adhering to data 

protection regulations, several additional considerations come 

into play. EKS allows for fine-grained control over your 

Kubernetes environment, which can be leveraged for 

compliance. Implement pod security policies to enforce strict 

controls on what containers can do and access. Use 

Kubernetes network policies to isolate sensitive workloads 

and control pod-to-pod communication. Leverage AWS 

Fargate for EKS to run containers without managing the 

underlying EC2 instances, which can simplify compliance by 

reducing your infrastructure management responsibilities. 

Implement strong RBAC (Role-Based Access Control) within 

your Kubernetes clusters to ensure least-privilege access. Use 

Kubernetes secrets and AWS Secrets Manager to manage 

sensitive information like API keys and database credentials 

securely. Implement data encryption at the pod level using 

solutions like Istio or LinkerD service meshes. Use Amazon 

CloudWatch Container Insights and AWS CloudTrail to track 

all activities within your EKS clusters for logging and 

auditing. Implement automated compliance checks using tools 

like Kube-bench for CIS Kubernetes Benchmark evaluation. 

When processing personal data, ensure your EKS 

deployments include mechanisms for data subject access 

requests, data portability, and the right to be forgotten as 

required by regulations like GDPR. Regularly conduct 

security assessments of your EKS clusters and maintain clear 

documentation of your compliance measures. By combining 

EKS features with AWS security services and following 

Kubernetes security best practices, you can create a robust, 

compliant environment for your machine learning 

deployments.  

6. Customer Examples 
• Lyft: The ride-sharing company uses Amazon EKS to 

deploy and manage their machine learning models for 

various applications, including demand forecasting and 

pricing optimization. EKS allows them to scale their ML 

infrastructure efficiently and manage complex 

workflows. 

• Snapchat: Snap Inc. utilizes Amazon EKS to deploy 

machine learning models for content moderation and 

augmented reality features. EKS helps them handle the 

massive scale of image and video processing required for 

their platform. 

• Intuit: The financial software company leverages 
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Amazon EKS to deploy AI models that power features in 

their tax preparation and accounting software. EKS 

enables them to manage and scale their ML workloads 

effectively. 

• Zalando: This European e-commerce company uses 

Amazon EKS to deploy machine learning models for 

personalized product recommendations and inventory 

management. EKS allows them to handle seasonal traffic 

spikes and maintain high availability. 

• Formula 1: F1 uses Amazon EKS to deploy machine 

learning models that analyze race data and provide 

insights to teams and fans. EKS helps them process and 

analyze vast amounts of telemetry data in real-time. 

• Deliveroo: The food delivery platform uses Amazon EKS 

to deploy machine learning models for route optimization 

and demand forecasting. EKS enables them to scale their 

ML infrastructure efficiently to handle peak ordering 

times. 

• Robinhood: The financial services company utilizes 

Amazon EKS to deploy machine learning models that 

power various features, including fraud detection and 

personalized investment recommendations. 

7. Emerging Trends 
Emerging technologies are poised to influence AI model 

deployment practices in the coming years significantly. Edge 

computing is becoming increasingly important, allowing 

models to run closer to data sources, reducing latency and 

improving privacy. 5G networks will enable faster, more 

reliable communication between edge devices and central 

servers, facilitating more complex distributed AI systems. 

Quantum computing, while still in its early stages, promises to 

revolutionize certain types of machine learning algorithms, 

potentially allowing for much more complex models to be 

trained and deployed efficiently. Federated learning is gaining 

traction as a way to train models across decentralized devices 

without sharing raw data and address privacy concerns. The 

rise of AI-specific hardware, such as neuromorphic chips and 

custom ASICs, will likely change how models are optimized 

and deployed. Explainable AI (XAI) technologies are 

becoming crucial for regulatory compliance and user trust, 

influencing how models are developed and deployed. As of 

my last update in April 2024, technologies like automated 

machine learning (AutoML) and MLOps platforms are 

becoming more sophisticated, streamlining the entire lifecycle 

of AI models from development to deployment and 

monitoring. Integrating blockchain for secure and transparent 

AI model governance is also an area of growing interest. 

These emerging technologies will likely lead to more efficient, 

secure, and ethical AI deployment practices soon. 

8. Conclusion 
Deploying AI models at scale is a critical challenge for 

organizations leveraging machine learning in production 

environments. By combining AWS SageMaker and Amazon 

Elastic Kubernetes Service (EKS), businesses can build a 

robust, scalable, and flexible infrastructure that automates the 

entire machine learning lifecycle—from model training to 

real-time inference. SageMaker simplifies model 

development and tuning, while EKS provides powerful 

orchestration and scalability for deploying models in a 

containerized environment. This integration enhances 

performance and availability and optimizes operational costs 

by utilizing Kubernetes' auto-scaling features and 

SageMaker’s managed training capabilities. In conclusion, the 

architecture and methodology outlined in this paper provide a 

scalable, cost-effective, and resilient solution for 

operationalizing machine learning models. By adopting this 

approach, enterprises can ensure their AI models are ready to 

meet the growing demands of real-time, large-scale 

applications, providing a solid foundation for future AI 

advancements.  
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